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Abstract. We present new results on a probabilistic approach to parallel dynamics of the 
Little-Hopfield model. We propose a truncated auxiliary dynamics method to control a 
feedback noise in this symmetrical neural network with full connection. It allows us to 
propose an ansatz for derivation of the explicit recurrence relations for the main and 
residual (noisy) overlaps evolution for arbitrary discrete moment t. 

1. Introduction 

In this paper we derive the explicit equations for the main and residual overlaps 
evolution generated by the parallel dynamics in the case of the Little-Hopfield ( L H )  
model [ l ,  21. The fundamental difficulty of the problem is a strong feedback which is 
an attribute of fully connected symmetrical neural networks, like the LH model, for 
discussion see e.g. [31. 

It is known that one can exactly and explicitly calculate an evolution for the main 
overlap if this feedback is suppressed either by modification of the model (e.g. 
feedforward layered neural networks [4-71) or by the extreme asymmetric dilution of 
the LH model [8]. In the recent paper [9] it is shown that the extreme dilution allows 
one to control a residual feedback exactly even for the symmetrical case. 

There are several approaches to take into account the long-term temporal correla- 
tions in the LH model treating the feedback influence on the network evolution as an 
intrinsic noise. The first attempt was to model it by a steady Gaussian noise with zero 
mean and variance D = a [ 101 which corresponds to the complete neglecting of 
correlations. Here n = MI N,  where M is the number of random independent patterns 
stored in the network and N is the number of neurons. The next one [11,12] was to 
suppose that the variance of this Gaussian noise evolves with time as a function of 
the main overlap. Further natural generalization is an ansatz with non-Gaussian noise 
[14]. But application of these approximate treatments to the analysis of the long-time 
evolution of the LH network is not very reliable. Therefore, it is important to calculate 
its development in time without approximations. In the present paper we also did not 
succeed in complete resolving of this problem. We propose a new approach to the 
analysis of the parallel dynamics in the LH network that reproduces the previous results 
[ 13,151 and elucidates the approximations formulated in [ 141, cf (45) and [ 14, equations 

The control of the increasing complexity of a feedback noise for networks with 
full connection is a rather difficult problem, e.g. for the LH model only a few first steps 
of the main overlap evolution for the parallel dynamics were known [13, 15, 161. The 
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analytical treatments [15,171 allow one to calculate the explicit equations for the first 
two steps of the main overlap evolution. The difficulties there manifest themselves as 
a fast ill-controlled increasing of the number of auxiliary order parameters in the 
saddle-point calculations. Note that the expressions proposed in [13] correspond to 
the second-step formulas of the systematic treatments [15-171. 

In [16], we proposed a probabilistic approach to the parallel dynamics in the LH 
model. We demonstrated that the feedback noise can be exactly taken into account 
via stochastic equations for the evolution of the residual overlaps. This method allows 
one to rederive the Gardner-Derrida-Mottishaw second step formula for the main 
overlap and to go on to the next steps. For example, we calculated the third step 
formula and discussed a dynamical status of the Amit-Gutfreund-Sompolinsky formula 
for the main overlap which is obtained by the methods of the equilibrium statistical 
mechanics [18,191. The application of our method to the feedforward layered neural 
networks [4-71 allows one to derive rigorously the system of recursion relations for 
the main and residual overlaps [SI, which gives an exact solution of this model 
discovered in [6,71. Using the same approach we show [9] that an extremely diluted 
version of the LH model, proposed in [8], can he solved exactly for the case of the 
symmetrical synaptic connections. The feedback noise in this case can be entirely 
controlled. 

The aim of the present paper is twofold. At first we improve our method by a new 
trick: a truncated auxiliary dynamics. It makes our line of reasoning shorter and more 
clear. Thereupon, we apply this approach to derivation of an explicit equation for an 
arbitrary step of the main and residual overlaps evolution generated by the parallel 
dynamics for the LH model. 

We derive them by induction starting, for simplicity, with the zero-temperature 
case # =O. Therefore, in section 2 we introduce necessary notation and definitions and 
derive the corresponding equations for the first step t = 1. Truncated auxiliary dynamics 
is introduced in section 3. Then, we use this trick to derive recurrences for f = 2. In 
section 4 we start with derivation of the explicit formulas for the main and residual 
overlaps for f = 3 which we use then for induction. There the essential point is the 
ansatz about the absence of correlations between the Gaussian and ‘memory-like’ 
discrete parts of the noise {‘a’-lim for f >2,  see (45). This ansatz allows 
one to close the induction in derivation of the explicit equations for the main overlap 
evolution. The absence of correlations in (45) for f = 1 (see (28)) is a consequence of 
(23)-(27) and of the choice of the initial configuration (8). This leads to the famous 
second step formula (29) for the main overlap. At present, we have no convincing 
arguments in favour of (as well as against) this ansatz for f 2 2. The rest of this section 
is devoted to calculations for the arbitrary step 1. In section 5 we generalize the above 
results for # # 0 and conclude by some remarks. 

2. The problem and the first step for the main overlap 

The LH network is considered as a model of content-addressable memory, see [1,2] 
and the recent book [19]. It is able: 

{ l ,  2 , .  . . , MI, 
encoded by the binary code, i.e., [cf = *l}iEINl.  p € [ M ]  are independent 
identically distributed random variables (IIDRv) with Pr([: = i l } = f ,  and we are 
interested in ‘o’-lim(*) =limN-m:MEaN (*); 

(i) to store extensively many uncorrelated patterns {[p)ps[~l.  [MI 
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(ii) to retrieve them from a noisy stimulus (almost perfectly for a small CY) as 
attractors in the configurational space of the network of the two-state neurons {si = 
*l}iEINl interconnected by the synaptic couplings {JY}j,je[Nl. 

These fundamental features of the LH model are ensured by the Hebbian symmetrical 
synaptic connections 

and by appropriate dynamics for updating the neurons at discrete time intervals, see 
e.g. 1191. One simple type ofsynchronous update ofthe neutrons 9 ) " : s j ( t ) + s i ( t + l ) ,  
i E [NI,  can be described by the transition (conditional) probability 

where h i ( t )  =Zj,[Nl\i J r s j ( t ) .  This is parallel dynamics for the temperature 0 =p-' 
(Glauber dynamics, see e.g. [19]), which we use throughout the present paper. But for 
simplicity we start below with the zero-temperature p = m and postpone the case of 
p < m until section 5.  

Following the papers [5,16] we consider simultaneous evolution of the main: 

which are induced by the parallel zero-temperature dynamics a)"="' (see (2)) 

Then, by definitions (1) and (3)-(5) one gets 

where we introduce 

%II ,..... IIk 9.8. ..... P 
w[N]\ i  (f)-5~m~NNlji(f)+u~Ni\l  * ( t )  

to distinguish the case of an arbitrary set {fii)f=, from the case of qu{fii}l(=l. 
Let the initial condition {S ; (~=O)] , . [~~  be I I D R V  correlated with only one pattern 

tq, i.e. 

pr{sj(0)&' = *I )  =$( I  * 6,,m4(0)) mq(0) # 0. (8) 
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Then one can show [16] that the central limit theorem (CLT) is applicable to the random 
variables ufNl\!( f = 0) and one gets: 
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(9) 
where d means convergence in distribution and Jv (a, b)  is a Gaussian random variable 
(with mean a and variance b). Due to the structure of vpNl\i(t = 0) variables 5: an 
upNl\; are independent. As a corollary, by (7)-(9) and the strong law of large numbers 
(SLLN) for the arithmetical mean in (6), one gets for the main overlap (3) the well 
known formula [lo, 161: 

d ‘a’-Iim ~ ~ ~ ~ \ ~ ( t = o ) = & ~ ~ ( o ,  1 )  

m ‘ ( f  = 1 )  = E  sign[m4(t =O)+&N(O, l)]=erf (10) 

where e r f z = m j ; d x  exp(-x2/2). 
By initial conditions, {.$‘s,(O)}~~[NI are I IDRV with expectations E ( S f q ( 0 ) )  = 

8, ,mq(0) ,  see (8). Then by the CLT the residual overlaps (4), at the moment f =0, are 
independent Gaussian noises: 

p€[Ml\q. ( 1 1 )  
d r p ( t  =0) =‘a’-lim rfNl(f =0) =N(O, 1)  

Therefore, the one-step evolution of the residual overlaps is described by stochastic 
recursion relations (6) in the ‘a’-lim, see (21) below. 

3. Truncated auxiliary dynamics 

By the full connection of the LH network, any two neurons have the direct interaction 
between each other. Consequently, for all ie [ N I  expressions 

sign - r f N ] \ , ( f ) + 5 f w P ~ 1 \ , ( f )  =5fsE(t+1) [A 1 
contain the term ( l / m ) r f N 1 \ , ( f )  in common. This term is almost independent of i in 
the sense that IrfNl\I( f )  - rfNl\,( ?)I s 2/m for arbitrary i, j E [NI. Therefore, random 
variables { t f ~ , ( t ) } , ~ , ~ ~  at f 3 1 are dependent, and we cannot directly apply the CLT 
to the residual overlap (4) at f 1. It has to be emphasized that this dependence is 
created iff one takes into acount the term ( l / m ) r f N l , , ( f ) .  

Let us define truncated auxiliary dynamics, cf. ( 5 )  and (7), by 

s f ( t + l ) = ~ i g n [ w p i ~ ~ , , ( f ) ]  (12) 
where the influence of the common residual noise ( l /m)r fNl , , ( f )  corresponding to 
the pattern p ( # q )  is cancelled. Then (cf. [ll]) 

Now, by the CLT for the first term in (13) one gets 

‘a’-lim - 1 [Psy( f = 1) = N(0,I) P E  [Ml\q. (14) 1 d 

m is[N] 

By (7)-(9) we get for the density of the probability distribution 
F, ( 0 )  ( ~ ) = ‘ a ’ - l i m P r { w P ~ ~ \ ~ ( f = O ) ~ ~ }  
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the following expression: 

The independence of the random variables (7 and wp,$,\J I = 0) implies that F E ( x )  = 
‘a ’ - l im{t f~&\~( t  = 0) s x} = F‘,O’, i.e. one gets 

Due to the independence of the random variables rf’Nl\((f=O) and S P W ~ , $ ~ \ ~ ( ~  =0) we 
have for conditional probabilities 

P ~ { S ~ W ~ ~ ~ \ ~ ( I = O ) E A / ~ ~ ) ~ ~ \ ~ ( ~  =O)]=Pr{S~w~,$ l , j ( r=O)~A) .  
Then, comparing 

see (21, with .$ysP(f = 1)  =sign[ t r~&\~( t=O)] ,  cf (12), taking into account that 

Pr{rt)Nl\i( f = 0) = o(log N), N + 00) = 1 

and using (16), we obtain for the random variable equal to the conditional probability 
of S ~ ( s i ( f = 1 ) - s ~ ( r = 1 ) ) ~ 5 P = { O ;  +2 ]  given m-algebra A,nco, generated by rPNl\i(f= 
0), the following representation ( N  + a): 

Pr{A=*21rPNl\j(t=O)) 

11 = e(*rfNl\i(f =O))  Pr 

where O(x) is a Heaviside step function. 

the SLLN in the following form (N+ a): 
Note that for the sequence of IIDRV [ y j  =0, 1]Ll with Pr(y, = 1) = c/m we have 

for arbitrary E 7 0. The same property (18) holds also in the case of the weak depen- 
dence. For instance, for the random variables restricted onto A,qo1, i.e., for random 
variables tPI, ,(  .) with probability distribution P(LPIA,), where ZAA( .) is indicator of 
A x  and {AkIk are atoms of the u-algebra A,P,,,,. Therefore, we get 

1 N  
‘a’-lim- 1 (SP-E(5PIrPNl\j(t=O))) = O  (P-as . )  (19) Ai;=, 

Then (17) and (19) give for N + m :  

1 [P(si(t = I)-$( I =  1 ) )  = 2 p , 0 ( 0 ) r P N l \ i ( t = O ) + ~ ( l )  (20) 
1 - 

ie[N1 

and, together with (14). (15), we obtain from (13) that 

(21) 
d 

rP(t=l)=‘a’-lim rf“l\i(t=l)=K‘P’(O, 1)+2pw,,(0)r’(t=0). 



3418 

Remark 3.1. Since the random variables l / f i X j e [ N l  #ysy(t = 1 )  and r f N l ( t = O )  are 
dependent the same is also valid for the variables X'"(0,l) and rP(t=O) in the 
stochastic recurrence relation for the limiting residual overlaps ( Z I ) ,  see below ( 2 5 ) .  

As above, to calculate m q ( f  = 2) we have to obtain distribution for the limiting 
random variables 'a'-lim U ~ ~ I \ ~ ( ~ =  11, see (6), (9). First, we consider variance D ( t =  
1)  =Var(r'(f = 1) ) .  Then using (14) and (21) we can rewrite it in the following form: 

A E Patrick and V A Zagrebnov 

r i  
D ( f  = 1 )  = 'a'-lim Var - 1 #P(sf(f = I)+2pw,o(0)s,(f=0)) 1fi is [N] 

Now, s p ( t  = l)si(t =O) = s i g n ~ s ~ ~ f = O ~ ~ ~ m ~ N l ~ ~ ( f = O ) + ~ i ( f = O ) u ~ ~ l ~ i ( f = O ) l ,  see (7) 
and (12). Then independence of variables s<(t = 0) and f = 0), together with (8), 
(9), implies that 

' a ' - l i m E ( s ~ ( t = l ) s i ( t = O ) ) = m q ( r = 0 ) m 4 ( f = 1 ) .  (23) 
Similarly, one gets that 

E(sf(f = l)sj(t =O)) = E ( s t ( t  = l)sj(t=O)) 

= E ( s f ( t  = I ) # ; ( [  =O)) = o  i#j. 
rhen from (22), (23) we ob!.-in: 

D ( f  = 1) = 1+(2pw,0(0))2+4m9( t = 0 ) m 9 (  f = 1 ) ~ ~ , ~ ( 0 )  

C O V ( ~ ~ ~ ' ( ~ ,  I ) ,  r p ( t  = 0 ) )  = mq(r = 0)m9( t  = I ) .  

(24) 
and in particular (see (21) and remark 3.1): 

(25) 
Using equation (13), (14) and (ZO), (21), we can represent the residual overlaps 

for f = 1 (see (6), (7)) as follows: 

Note that subtraction of the term ( l / f i ) # p s i ( t  = 1)  from the IfNl([= 1 )  (cf. (13), (20) 
and left-hand side of (26)) we represent in the form with the second sum over [ N I .  
Correction corresponding to the term j = i in the last sum in (26) has the same order 
as o(1) and could be dropped. But we save it in (26) because it is this term that creates 
dependence of the random variables {#frfNItj(l = l)}p(+q,. This is the origin of non- 
Gaussian distribution for the variable V ~ ~ ~ , ; ( I ) ,  since from (7) and (26) we obtain 

(27) 

Now we can apply the CLT to the double sum in (27). Then by (22) and (24) one gets 

M - 1  
N +- 2Pw.o(0)&(f = 0) + O ( l ) .  

6 - 1  U -111.2 i i - . , ~  "[N]\<<'- / , -< \< .Cu 'q1 /n  ' , - T u " -  I". Y , .  n / t = i \ \ 1 7 n n  - ' I ,  I '-yw,O\",",,. /n \c/ . -n\  - " I .  (28) 
Hence, by the SLLN for the arithmetical mean in (6) together with (28) we get for the 
main overlap at f = 2  another famous formula [13,15,161: 
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R e m a r k 3 2  Formula (29) was discovered in [15], see also [13,17]. The method which 
we exploited in [16] allowed one to check (29) and to go further, e.g. to the explicit 
formula for m4(t=3) .  The truncated auxiliary dynamics trick (12) and a new rep- 
resentation for the residual overlaps (cf (6)  and (26)) improves the method. It allows 
one to simplify the derivation of the explicit structure of the formula for the main 
overlap evolution for the aribtrary moment t,  see section 4. 

4. Recursions for the main and residual overlaps 

Before proceeding to the induction for the general case, it is useful to explain our 
strategy for the particular example m9( t = 3). 

First one has to calculate the residual overlaps r p (  f = 2), see (6). Using the truncated 
?a,,"iI;2m, A x m n m i r .  (171 ""A renrocm+.+inn ( 1  1 )  *.,a "-I 
I" ......-., -.,..-....- I \--, I.._ .-r .- 1-...-..1,. \l-,, .,_ b-' 

(30) 
1 (psi(t = 2) =sign - r f N l j i ( t  = 1)  +(:wg&,,(t = 1) 

f P s 4 ( t = 2 ) = s i g n [ f p w p ~ , \ i ( t =  I)]. 

[A 
and 

Therefore, to calculate the 'a'-lim for the second term in representation (13) for t = 2  
one has to obtain the distribution FC' for the noise 'a'-lim W P ; C ] , ~ ( ~  = 1) in (30). 
According to (7) and (28) we obtain 
'a'4m wq.p [ N , \ i ( f  = 1) 

= ( p m 4 ( t  = 1) +2apw,o(0)sj(t  = 0) +&N'"'(O, D(r = 1)). (32) 

To take into account correlations between variables (9 and si( t =0) (see (8)), then the 
distribution density ( d / d x ) F : d ( x )  for the random variable 'a'-lim [Pwp$l,j(t = 1) in 
(30) gets the form (cf (15), (16)): 

(x- u , m q ( t  = 1) 
2aD(t = 1 )  (33) 

N O W ,  G S k g  the Same ! h e  of reasoning 8 s  in (!7)-(20), hy (30) 2nd (33) we ob!~in (d 
(20). 21)): 

r p ( t  = 2) d ~ " ' ( 0 ,  I )  + ~ p , , , ( o ) r p ( t  = 1). (34) 

Similar to the case of t = 1, see (26 ) ,  it is convenient to rewrite (34) (see (14), (21) 
and (31)) in the following form (cf (22)): 
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Here we again have to save the second term in (35), see (26). (27) and the comments 
after (26). Then by (7). see also (271, we have 
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I) .  (3t 

As above, see (27), we can apply the CLT to the first term in (36). Then in ’u’-lim it 
converges to & K ‘ q J ( 0 , D ( ! = 2 ) ) ,  where, by (35) and (36). D ( t  = 2 ) = V a r ( r P ( f = 2 ) ) ,  
cf. (22). In this limit we get also 

( S g ( t = l ) - s , ( f = l ) = O  ( P r = l )  
1 

‘a’-lim - 
pe[MI\q 

see (17). Hence, cf (28), one gets 

u -1im upNl\,( t = 2) $ 1  

$& N‘”(0, D(t  = 2 ) ) + 2 u p W , , ( O ) [ s ; ( t  = l)+2p,,o(0)s~(f = O)]. (37) 

To calculate the variance 

D~t=2~=1+(2p~,,(0))2D(t=l)+4p~,,(0)cov(Nnr‘P’(0, l ) ,  r’(f= 1 ) )  (38) 

see (34), we can use the same line of reasoning as in (22)-(25). Then by (35) one gets 

1 
D(f=2)=‘u’- l im-  

N 

x 1 Var[sT(t = 2) +2pw, , (0) (s ,”( f  = 1)+2pw, , (0)s ; ( t  = O))] 
jsIN1 

= i+(Zp,,(o))’D(t = 1) 

+ 4p, ,  (0) E [ s,”( f = 2 )  ( s,” ( f = I )  + 2 p , , ( O )  si ( f = 0)) 1 
Taking into account ( 2 8 ) ,  ( 2 9 ) ,  the representation (32) and 

we obtain 

‘a’-lim E(s,P(t = 2 ) s ; ( t  = 1)) = m q ( f  = I ) m q ( t = 2 ) .  

By the same reasoning, we get 

U -IIIIIL\Jj\L-Lj~j\L-”/, .^.* 8 : -  z . / ” P f . - q l  P f . - - n \ l  

1 - ( m 4 ( r  =0)l2 
2 = m q ( t r = O ) m q ( f = 2 ) +  

(39) 

(40) 
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Therefore, according to (38)-(41) we obtain, cf. (25), 

cov(~(” (0 ,  I ) ,  rp( t  = 1)) 
r 

= mq(t  = l )mq(  I = 2) +2p,,(O) m‘( t = O)mq( t = 2) L 
‘I I = 1)+2uap,”0(0) 

2 r=*1 2 u e r f ( m ( v ’  aD(t  = 1) 
1 - (m“(r =o))* + 

Hence, by the SSLN for the arithmetical mean in (6) together with (37) one gets for 
the main overlap at I = 3  the formula derived in [16], cf (29), 

m “ ( t = 3 ) =  1 [ l + u o m q ( t  =O)] [I + u , m q (  t =  I)] 
“ O P , * l  2 2 

where D ( f  = 2 )  is defined by (38), (42) and 

[ 1 +uomq(r =O)] [ 1 +UT,“( i = I ) ]  
2 2 

=Pr{.$9si(r=O)=uo; # : s j ( t = ~ ) = u , ] .  

Using the same line of reasoning as above, we can proceed to the general inductive 
step. Let rf”]\;(t) have the form (see (26) and (35) for t = 1,2): 

where ao( l )  = 1 and s f ( ~ = O )  3 s,(r=O). Then, similarly to (28) and (37), we have 

Here we again used that ‘a’-lim l / ~ ~ ~ ~ ~ ~ ] \ ~ ( s ~ ( I ) - s , ( t ) ) = O  with Pr= 1 ,  see (17). 
To close the induction we use here the ansatz mentioned in introduction. Namely, 

we suppose that random variables {‘a’-lim c?UpN]\ , ( f ) } i  are the sums of the independent 
Gaussian and discrete (‘memory-like’) parts, as it is represented by (45). Hence, one 
gets for the corresponding distribution density the following: 

whereP,(uo,u,,.  .. ,u , I - - I )~Pr{ .$?sj (0)=uo;  .. . ;  ~ ? s ; ( l - l ) = ~ , - ~ } . T h e n , a g a i n b y t h e  
SLLN and (6), (46), we obtain for the main overlap (see (29), (43)) general recurrence 
relation: 

On the other hand, by definitions (6) and relation (45). one gets representation 
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Using the independence of the first and second terms in (45). we can calculate the 
distribution density of the variable ‘a’-lim ~ P ~ p i & ~ , ~ ( r )  = gr(Pmq( t )+  
&Xip’(O, D ( t ) ) + a  X;ZLa,-,(t)[;st(~), cf. (151, (16) and (32), (33), 

A E Patrick and V A Zagrebnov 

d 

where P2(u,uo ,..., u , ~ , ) - P ~ { ~ P ~ ~ = ~ ; ~ P s ; ( O ) = U ~ ;  . . . ; 5 P ~ ~ ( t - l ) = u , ~ ~ } .  Then, 
using the truncated auxiliary dynamics and the representation (13), we get by (49) 
that (48) can be rewritten as 

where 

a n ( t + l ) = l  Q , + , d t +  1)  = 2PW.f(O)Q,d1). (52) 
Comparing (44) and (511, we see that the latter formula completes the inductive step 
for the residual overlaps evolution, i.e., one gets (cf. (21), (34)) 

rP(t+l)dK(p)(O, 1)+2p,,,(O)rP(t). (53) 
Finally, we have to obtain explicit formulas for the variance D ( t )  = Var(r“(1)) and 

Using (6) and (45). we get 
the probabilities P,(uo;. . . ; U , ) ,  P2(u;  uo;. . . ; U,) ,  see (47) and (49). 

1 ,-I 
m4(f)+gP&Niq)(O; D( t ) )+a  a,-,(f)Cs,(T) 

i = 0  

Then we have 

PI(%; V I ; .  . . ;U,+, )  

1-1 

m q ( t ) +  57~;; N ‘ ~ ) ( O ,  D ( t ) ) +  a 1 a , - , ( t ) t : s , ( T ) ]  
,=n 

1 1-1 

= U , + , ;  {5?S4(7)=U~r):-o 

mq(f)+,$:\/;;N‘q)(O, D ( f ) ) + a  1 a , d f ) u 7  
7-0 

-U,+, P d ~ o ; ~ , ; . . . ; ~ , )  

“ , ~ , [ ~ ~ i , J + ~ ~ ~ : ~ ~ , - , i , l l  

- 1  
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which coincides with the following recurrence relation: 

with initial condition 

1 + uom4( f = 0) 
pi(Un,)= 

The same calculations for P2(u;  U,,; U , ;  . . . ; ultl) give recurrence relation 

wiith initial conditions 

1 + m o m 4 (  f = 0) 
4 Pz(U; C O )  = 

and P 2 ( u ) = $ ,  see (15 ) .  
Now we return to evolution of the variance D ( i ) .  From (52) one gets, cf. (24), (38), 

D ( f + l ) =  1+(2p, , (0) )2D(t )+4p, , (0)  ~ov(N‘~’(0,  1). r P ( t ) ) .  ( 5 8 )  

Using representations (50)-(52), we obtain 

If one takes into account that the joint distribution of s p ( f + l )  and s ~ ( T )  coincides 
(in the ‘a’-lim) with the one For si(t+l)  and s , ( T ) ,  see section 3, then 

E ( s f ( f + l ) ~ P ( ~ ) ) =  1 u,+ ,u ,~ , (u~;u , ;  ...c,+, ) ~ c , + , , ~ .  (60) 
{m.=*,t::; 

As a consequence, finally get for ( 5 8 ) :  

D ( i +  1) = 1 + ~ ( P , , ( O ) ) ~ D ( ~ ) + ~ P , , , ( O )  1 a,-Af)C,+,,,. (61) 

Equations (47), (49), (52)-(57) and (61) give recursions for the main and residual 
overlaps evolution in the case of the zero-temperature parallel dynamics for the LH 
model. 

7.-n 

5. Conclusion 

We start this section with generalization of the recursion relations (47), (49). (52)-(57) 
and (61) to non-zero temperature parallel dynamics (2). Recall that (2) is equivalent 
to the replacement of ( 5 )  by the stochastic equation 

si(t+l)=sign[ je[Nl\ i  , f s j ( t ) + T ( ( t ) ] ,  (62) 
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Here {qc ( t ) } i e [N l , , bv  are unquenched IIDRV with distribution Q B ( x )  = Pr{q,(r)<x), 
which is equal to 

(63) Q p ( x )  = f (  1 + tanh Ox). 

They represent a heat-bath noise for the temperature 0 = p- ' .  As a result we get in the 
arguments of sign in (6) the additional independent noisy terms [:qi(t) and g q i ( r ) ,  
p E [M]\q, respectively, which have the same distribution (63) as qi(t). Therefore, 
taking into account (62) we obtain for the main overlap m q ( t )  (cf (6) and (45)): 

Hence, the distribution of the intrinsic noise is the convolution of the probability 
distributions of two noises: &N(')(O, DB( t ) )+  a Xt$ al~)r(r){Ysi(T) and q , ( t ) .  Then 
the distribution density of the variable 'a'-lim S:[uPNlji(t)+ q j ( r ) ] ,  cf. (46), gets the 
form: 

where the weight functions Pi')(uo; ul;. . . ; v , - ~ )  have the form (cf. (54)) 

Pi"'(uo;.  . . ; 

with the initial condition ( 5 5 ) .  In a similar way, instead of recurrence relation (56) we 
get 

p ,  (U; g o ; .  . , ; U,+l) 
(el 
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with the initial condition ( 5 5 ) .  Then the distribution density (49) for non-zero tem- 
perature takes the form 

where instead of (52) we have 

absYt+l)= I ,  a i ~ ~ ~ : - , ( t + l ) = 2 p ' , B ! ( o ) a ! s ~ ( t ) .  (69) 

Therefore, stochastic recurrence relations for the residual overlaps get the form (cf. 
(53) and (68)) 

r < ( t +  1 )  d ~ ( " ( 0 , 1 ) + 2 p ' , B ! ( 0 ) r $ ( t ) .  (70) 

To close the system of equations for the main and residual overlaps evolution for 9 # 0 
we have to complete it by the recurrence for the variance of r : ( f  + I),  cf. (60), (61): 

D , ( t + l )  = 1+(2p',B!(0))2D,(t)+4p',Bi(0) 1 a!?Jf)c!t) , , ,  (71) 
7 = O  

where 

Remark that nowhere above we have used an a priori averaging over the thermal 
noise associated with dynamics (62), (63), see e.g. [4]. Our formulas (65)-(72) are a 
consequence of the same line of reasoning as above for 9 = 0: we are exploiting the 
CLT and SLLN in the 'a'-lim. As it is clear from the nature of the noise 1) (62), they 
have to coincide with the ones we would get when we first average over the thermal 
noise q and after goes to the 'a'-lim via the CLT and SLLN for realizations of key 
patterns. For instance, (65) is equal to the equation 

1 
m 4 ( r + 1 )  ='a'-lim- 1 grE,(s j ( r  + I ) )  

N i e [ N 1  

that is often used as a definition of the main overlap for non-zero temperature. 
In paper [16] we proposed arguments in favour of dynamical origination of the 

Amit-Gutfreund-Sompolinsky formula for the main overlap as a limit for t+m.  The 
recurrence relations (47) or (65) do not improve these arguments very much because 
it is difficult to go to t + m  directly in these recurrences. This is a hint that the shape 
of a possible attractor for the main overlap evolution has a rather complicated structure. 
On the level of two-step (Gardner-Derrida-Mottishaw) formula (29) this problem was 
discussed in [13]. 

Explicit relations (54), (66) allow one to consider another important problem: 
dynamics of the flipping of individual spins along a time trajectory to attractor, In 
particular, they describe a transition between two regimes of the temporal sequence 
( # S i ( T ) } r a ,  flips: for a+O (independent flipping) and for a large (I (stabilization of 
the sequence). We hope to return to these problems elsewhere. 
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Summarizing, we would like to stress that our approach to derivation of the 
recurrence relations for evolution of the main and residual overlaps for the LH model 
is far from being rigorous. But we think that an advantage of the probabilistic approach 
consists in the possibility to refine upon a systematic analysis of the feedback noise 
via stochastic equation for the evolution of the residual overlaps. This approach allows 
one to distinguish an exactly solvable cases (like feedforward and extremely diluted 
neural networks) and to get hints for approximations like the ansatz for the general 

expression (45) elucidates the ansatz proposed in [14], see equations (4) and (5). We 
calculate explicitly the effective Gaussian noise and the discrete (‘memory-like’) noise 
involved in (45) but we assume them being independent 

inductive $!Pp for !hP main ov.r!ap Pvo!u!ion forrEu!z!Pd la sec!ion 4. !E this sense 
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